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I. INTRODUCTION

In "Are Fast Atmospheric Pulsations Optical Signatures of Lightning-

Induced Electron Precipitation?", LaBelle (Ref. 1) makes a case for fast

atmospheric pulsations (FAPs) being produced by lightning-induced electron

precipitation (LEP) events. The FAPs being discussed were observed in the

vicinity of L=1.56 during the 1970-1972 period [Ogleman (Ref. 2)] and from

1972 to 1976 [Tiier (Ref. 3)]. The proposed mechanism is as follows: A

lightning stroke in the southern hemisphere produces electromagnetic waves

which couple with the magnetosphere and propagate in the whistler mode to

interact with energetic electrons via a cyclotron resonance. The electrons

are scattered by the interaction and their mirror points are lowered (on

average, since the initial pitch-angle distribution is anisotropic) so that

they interact with the neutral atmosphere, producing a sub-millisecond

flash of visible light with the characteristics of a damped 10 kHz oscilla-

tion. To account for the short duration of the FAP, the interaction is

said to occur over a short (< 300 km) region of field line; invokes elec-

tron penetration into the atmosphere to a 70-80 km altitude where the col-

lision frequency is 105 sec - 1 or higher (which requires a minimum of 0.1

MeY electron energy to penetrate to that depth); and also invokes > 2 NeY

electrons as the agent in order to satisfy the requirement for low temporal

dispersion. The author provides a number of statistics: an average rate of

FAPs of 10-4 sec-1; an average electron energy flux of 10-3 ergs cm-2 per

event (assuming a light production efficiency of 1O-4); and, an average

electron energy of 1 1eV to get an average precipitated electron flux of 6

x 102 electrons cm-2 per event, resulting in a loss rate of 6 x 10-2 cm
2

sec "1 at the atmosphere. This is equivalent to 3 x 10-2 oM-2 sec-1 at the

equator (including a factor of 2 to account for the divergence of the field
lines at L=1.5). He then states that the total omnidirectional electron
flux for energies above 0.5 MeV in the inner belt is of the order of 108

electrons cm-2 see-1, citing Vette et al. (Ref. 14). It is at this point

that a problem with the model arises. The resulting numbers indicate a
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trapped lifetime due to LEP events alone of 4x,0
3 days, "comparable to the

lifetime estimated from Coulomb scattering for these energies (Ref. 5)."
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II. DISCUSSION

The Vette et al. reference is the AE-2 model (Aerospace Electrons,

version 2) which is a circa 1964 model that includes the Starfish fission

electrons. By 1968 most of the Starfish electrons had been lost, their

characteristic lifetime having been about 400 days (Ref. 6). Measurements

of electrons with energies much above 1 MeV in the inner zone were quite

difficult to make because the fluxes were very low compared with the fluxes

of very energetic protons which constitute an undesired background in all

particle measuring instruments. [Typical fluxes of protons, Ep+>100 MeV,

are of the order of 6 x 103 cm-2 sec-1 at L=1.5 (Ref. 7)]. During large

magnetic storms, when large quantities of electrons are accelerated in the

outer zone and diffuse radially inward, some energetic electrons do survive

traversal of the slot to become trapped in the inner zone (Ref. 8), but

these events are rare and the number of electrons with energies above 1 MeV

which are injected is very small. For almost all practical purposes, elec-

trons with energies above 1 MeV can be ignored in the inner zone. In the

present case, however, such particles are required for the proposed mecha-

nism.

A more recent inner-zone electron model, AE-6 (Ref. 9), indicates an

integral omnidirectional flux >0.5 MeV of the order of 5 x 106 rather than

the 108 used above. At 2.0 MeV, the respective numbers are 1.2 x 105 vs.

8.3 x 106 for the AE-2 model. A comparison of the AE-6 model with orbital

data (Ref. 10) shows that by 1968, the energetic Starfish electrons had

decayed to the level of the AE-6 model. With the 400-day characteristic

life mentioned above, another order of magnitude decay might have been

expected to have occurred by late 1970 when the first FAP observations were

made (Ref. 2) and yet another two orders of magnitude by the time the

latest Tumer (Ref. 3) observations were made.

The energetic electron flux, however, did not diminish to that extent.
Figure 1 Is extracted from Vette et al. (Ref. 4) and presents the AE-2

7



electron energy spectrum at L:1.5 in comparison with newer models and with

in situ measurements. The two data curves are both reduced to appropriate

units to be compared directly in energy and intensity with the AE-2 model.

One curve, with triangles denoting data points, was obtained from a paper

by West and Buck (Ref. 11) and is the measured equatorial spectrum at L=1.5

in 1968. The second curve, with data points denoted by filled circles, is

unpublished data obtained in July 1976 by the energetic electron spectrome-

ter on the S3-3 satellite. Also plotted are representative points from the

later National Space Science Data Center (NSSDC) models AE-5 (Ref. 12) and

AE-6 (Ref. 9). The S3-3 equatorial differential energy spectrum at L=1.5

is fitted very well by two power-law curves: NE =1 x 106 E-2.87 over the

energy range 0.1 MeV to 0.66 MeV and NE = 5.5 x 105 E- 4 . 3 8 above 0.66 KeV

where E is in units of MeV.

Figure 1 shows that AE-6 is an appropriate electron flux model to use,

at least at L=1.5, and that the high energy portion of the inner zone elec-

tron spectrum did not continue to decay exponentially past about 1968.

Note, however, that the correct value for energy flux at the equator at

L=1.5 will decrease by a much larger amount than the number flux since it

is the higher energy electrons that are greatly reduced with respect to the

spectrum used in the analysis by LaBelle. Note, also, that these data are

all at L=1.5, while the FAP observations were made at Ankara, Turkey, in

the vicinity of L:1.56. At L:1.56, the observed fluxes are lower than the

L=1.5 numbers by about 25%. The difference is not a significant one for

calculations relating to the FAP mechanism. Also, the FAPs were observed

to be centered to the south of a northern-hemisphere observing station,

indicating that they were occurring at a somewhat lower L-value than 1.56

(Ref. 2).

Further minor discrepancies (factors of 1.5 to 2) in the LaBelle anal-

ysis are the use of a bounce time representative of electrons with zero

pitch angle at the equator rather than the smallest angle which can tra-.

verse the South Atlantic anomaly region (about 370 for L=1.5); the reduc-

tion of flux at the equator relative to the atmospheric loss point due

8
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Fig. 1. Spectral Plot (Solid Curve) at L=1.5 Using the AE-2 Model Environ-
ment [Vette et al., Ref. 4] Reproduced from That Document. The
other curves are in situ measurements of the electron environment
made at L=1.5 in 1968 and 1976. Other electron models are also
plotted with individual points. All values have been converted -to
the convention used in the AE-2 plot. Note that all models and
data agree very well in the 0.5 14eV region but the AE-2 model
contains far more flux at higher energies because it represents a
combination of the natural and Starfish electrons.
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to the divergence of the field; and, the use of 1.0 x 108 electrons with an

average energy of 1 MeV instead of the AE-2 model's 1.19 x 108 omnidi-

rectional flux factor above 0.5 MeV with an average energy of 1.6 MeV.

These minor inaccuracies almost precisely cancel: the more precise calcula-

tions result in a number within 14% of the result obtained by LaBelle and so

will not be considered further.

Using realistic number fluxes and energy spectra for the 1970-1976

time period at the equator and integrating the experimentally determined

pitch-angle distribution from the S3-3 data along the L:1.5 field line to

the minimum trapped Bmirror (0.248 gauss, imposed by the 100 km altitude B

at the longitude of the South Atlantic anomaly), one obtains the number

fluxes and energy fluxes shown in Table 1. The ratios of the AE-2 numbers

to the S3-3/AE-6 numbers (third line in the table marked "AE-2/S3-3") are

the factors by which the calculated lifetimes against LEP precipitation

presented by LaBelle should be reduced. These numbers would give LEP-

caused lifetimes of about 200 days if the >0.5 MeV flux were used and a

lifetime of about 10 days if the >2 MeV fluxes were used.

Table 1. Electron Fluxes and Energy Fluxes at L=1.5

N>0.5 MeV N>2.0 MeV E>0.5 MeV# E>2.0 HeY

AE-2 1.19 x 108 3.8 x 107 1.9 x 108 1.0 x 108

S3-3 8.3 x 106 8.9 x 104 9.8 x 106 2.4 x 105

AE-2/S3-3 14.3 427 19.4 417

*In units of e-/cm2 -sec #In units of Nev/om2-sec

An even more serious problem than the use of the AE-2 electron model

is the conjectured location of the lightning stroke. The peak of occur-

rence of FAPs is in the winter while the thunderstorm frequency in TurKey

peaks in the sumer. This is explained by resorting to a peak in the

thunderstorm occurrence at the conjugate point in southern Africa which is
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then in summer. For the cyclotron resonance utilized in the explanation of

the phenomenon, the lightning-generated waves must be travelling in a

direction opposite to that of the interacting particles. Whistler-mode

waves generated in the southern hemisphere would be northward-going and

would interact with southward-going particles, resulting in electrons with

lowered pitch-angles which are moving in a southward direction. The first

interaction would be with the atmosphere in the southern region if their

mirror B was high enough to mirror within the atmosphere. At 100 km alti-

tude (the top of the atmosphere) at the longitude of Ankara, 330 E, the

L=1.5 field line has an intensity of .303 gauss in the southern hemisphere

and .1448 gauss in the northern hemisphere. The reflection coefficient for

radiation belt electrons at the top of the atmosphere is less than 1% (Ref.

13). Thus, more than 99% of the electrons pitch-angle scattered by waves

originating in the southern hemisphere would be lost into the atmosphere in

the southern hemisphere. In order for the electrons to precipitate above

Turkey prior to mirroring in the southern hemisphere, the whistler-mode

waves generated in the southern hemisphere would have to propagate through

the magnetosphere to a northern hemisphere reflection point without sig-

nificantly interacting with the energetic electrons, be reflected with

about a 5% reflection coefficient (Ref. 14); then propagate back up the

field line to the equator and there pitch-angle scatter the energetic elec-

trons. This is a highly improbable scenario.

It follows that, if lightning in the southern hemisphere were the

cause of the FAPs observed in the northern hemisphere, the original in-

tensity of the FAP in the southern hemisphere would have to be 2 or more

orders of magnitude greater than that which is observed in the northern

hemisphere. This rules out any possibility that FAPs observed in the

northern hemisphere are due to LEPs produced by lightning-generated waves

in the southern hemisphere in interaction with electrons on the field line

prior to the wave being reflected at the northern hemisphere ionosphere,

since this would produce electron lifetimes which are 2 or more orders of

magnitude shorter than those calculated above. This would result in elec-

11
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tron lifetimes at L=1.5 of less than 2 hours for >2 MeV electrons, if they

were the energy source, and less than 2 days if the energy source were the

>0.5 MeV electron population.

Clearly, the FAPs are not caused by LEP events in the southern hemi-

sphere with >0.5 MeV electrons, and especially not by the >2 1eV electrons,

in the mechanism proposed in LaBelle. Even if one assumes a 10- 3 efficien-

cy in transforming electron energy to light (Ref. 16) instead of the 10- 4

efficiency used in the LaBelle analysis, these numbers are changed to 20

hours and 20 days, still far shorter than the measured lifetimes in the

order of 400 days (Ref. 6). It thus appears that the mechanism proposed by

LaBelle is either incorrect or significant unknown factors have not been

taken into account in the analysis.

The requirement for atmospheric penetration of the electrons to 80 km

(to obtain a collision frequency high enough to explain the short duration

of the FAPs) limits the minimum energy of the particles producing the light

to about 0.1 MeV. Electrons up to 1.2 MeV have been observed to diffuse

into the inner zone down to about L:1.5 after magnetic storms. Vampola

(Ref. 17) and Ogleman (Ref. 2) observed a correlation between the FAPs and

the solar flare index. Could electrons with energies above 0.1 MeV be the

source of the energy? Integrating the energy contained in the electron

distribution between 0.1 MeV and 0.5 Mev results in a figure of 3.7 x 107

(in units of MeV/cm2-sec) for the omnidirectional energy flux at the

equator. This is a factor of 4 higher than the energy flux above 0.5

MeV. The bounce time is significantly longer (by about 50% at 0.1 MeV

compared to 0.5 14eV). If the energy contained in this part of the electron

population could also be used in the production of the FAPs, in addition to

the >0.5 1eV particles, the lifetime estimate would be increased by a

factor of 6. The resulting electron lifetime Is still only 120 days, under

the assumption that the interaction is with waves going upward in the

southern hemisphere even if an efficiency of 10- 3 is used for converting

electron energy into light of the appropriate wavelength. Thus even ex-

tending the minimum electron energy down to 0.1 HeY will not suffice to

permit the LaBelle model to work.

12



Another question which might be asked is: Can inner zone electrons be

ruled out as the energy source for FAPs? The answer is "No". Using a con-

version efficiency of electron energy into light of I0-3 , an energy source

consisting of all of the electron population above 0.1 MeY, and an assump-

tion that the observed intensity of the FAP light emission is the result of

the first Interaction of the electrons with the atmosphere (the electrons

have not been backscattered from the atmosphere in the southern hemi-

sphere), one would get an estimated inner zone electron lifetime in the

order of 1200 days. In this revised scenario, ample energy is available

for the electron population to be the source of the energy observed in the

FAPs. However, even ignoring lightning as a causative agent, there would

still be two major difficulties: the short duration of a FAP, and the 10

kHz microstructure observed in the FAPs. The short duration of the FAP now

becomes a serious difficulty because the difference in the bounce period

between the 0.1 MeV electrons (0.195 sec) and 0.5 or 1 HeY electrons (0.125

and 0.115 sec, respectively) is 2 orders of magnitude larger than the FAP

duration. Electrons with this spread of energies which were pitch-angle

scattered Just a few hundred kilometers above the atmosphere would have a

dispersion in arrival times in excess of the length of the FAPs. The 10

kHz microstructure observed in FAPS is also a serious difficulty since a

100 us period is orders of magnitude shorter or longer than characteristic

times associated with magnetospheric phenomena, such as wave propagation

along the field line (the order of 1 second), particle bounce periods (a

tenth of a second), electron gyration periods (a few msec), etc.

If the measured PAP intensity is being observed in the same hemisphere

in which waves propagating up the field line produce electron scattering,

the analysis above would lead to a lifetime of about 1200 days for the

inner zone electrons. The measured lifetime of energetic electrons in the

inner zone is of the order of 400 days for a wide range of energy over the

ranwe of L:1.4 to 1.75 (Ref. 6). Neither scattering by the residual atmo-

sphere nor radial diffusion to lower altitudes, where atmospheric scatter-

ing is more intense, can adequately explain this short lifetime. It may be

13
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possible to use the FAP-calculated energy loss rate to explain the inner

zone energetic electron lifetime. Perhaps the FAP is evidence of the elec-

tron removal process. The arguments contained in this conment do not rule

out lightning as the cause of FAPs, only the LaBelle scenario. We agree

with LaBelle's statement that FAPs warrant further investigation. Another

parameter which might be of use in addressing whether FAPs are due to LEPs

would be the diurnal variation of FAPs. The ionosphere is much more ab-

sorbing to VLF waves during the day than at night, by about 35 db, and FAPs

should be much stronger and much more comon at night.

A final comment: LaBelle states "...the inner radiation belt... con-

tains higher fluxes of energetic electrons ( 500 keV) than does the outer

belt." This should be qualified, since after major magnetic storms, the

differential electron flux at 0.5 MeY on a given field line in the outer

zone can be an order of magnitude greater than that which occurs in the

inner zone (Ref. 17). The spectrum in the outer zone is typically much

harder and the loss cone smaller, resulting in integral omnidirectional

fluxes above 0.5 MeV and 2 MeV that are, respectively, more than 1 and more

than 2 orders of magnitude greater that those which are present in the

inner zone. The longer bounce period for electrons in the outer zone re-

sults in a total energy flux on the field line that is even greater.
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